Continuous variable entanglement swapping

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2004 J. Phys. A: Math. Gen. 37 L385
(http://iopscience.iop.org/0305-4470/37/31/L01)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.91
The article was downloaded on 02/06/2010 at 18:29

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Continuous variable entanglement swapping

Masashi Ban
Advanced Research Laboratory, Hitachi Ltd, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan and
CREST, Japan Science and Technology Agency, 1-1-9 Yaesu, Chuo-ku, Tokyo 103-0028, Japan

Received 8 June 2004
Published 21 July 2004
Online at stacks.iop.org/JPhysA/37/L385
doi:10.1088/0305-4470/37/31/L01

Abstract

A sequence of entanglement swapping of continuous variables is considered. It is classified into one-way entanglement swapping and two-way entanglement swapping, where the former (the latter) uses one-way (two-way) classical communication. When resources of quantum entanglement are bipartite Gaussian states, it is shown that the one-way entanglement swapping is superior to the two-way entanglement swapping. This means that although the entanglement swapping is performed the same number of times, there is a case that the one-way entanglement swapping can yield an entangled state while the two-way entanglement swapping cannot.

PACS numbers: $03.67 . \mathrm{Hk}, 03.67 . \mathrm{Mn}, 03.67 .-\mathrm{a}$

Nonlocal entanglement between quantum states is a useful resource that has a number of applications in quantum information processing [1, 2], such as a secret key distribution [3], quantum teleportation [4, 5] and superdense coding [6-10]. Entanglement swapping enables two parties that do not share quantum entanglement to share quantum entanglement with the assistance of a third party [11-16]. Furthermore, entanglement swapping may yield long-distance quantum entanglement from properly distributed short-distance quantum entanglement. Hence entanglement swapping is one of the important methods in quantum communication technology which aims at quantum information network. Entanglement swapping has been investigated for discrete [11-13] and continuous variables [14-16]. It may be considered as the quantum teleportation of a part of an entangled state [17, 18]. The purpose of this letter is to investigate the property of a sequence of continuous-variable entanglement swapping. It will be shown that when resources of quantum entanglement are bipartite Gaussian states, one-way entanglement swapping is better than two-way entanglement swapping for distant users to share quantum entanglement. As an example, the condition for a sequence of entanglement swapping to yield an entangled state is demonstrated by means of two-mode squeezed-vacuum states.

The entanglement swapping is equivalent to the quantum teleportation for a part of a bipartite quantum state. Hence we first summarize the general theory of the continuousvariable quantum teleportation with the standard protocol [19] in the convenient way for investigating entanglement swapping. To teleport from Alice to Bob an unknown quantum state $\hat{\rho}_{\text {in }}$ which is defined on an infinite-dimensional Hilbert space \mathcal{H}, we assume that they share an arbitrary bipartite quantum state \hat{W}^{AB} defined on a tensor product of the infinite-dimensional Hilbert spaces $\mathcal{H}^{\mathrm{A}} \otimes \mathcal{H}^{\mathrm{B}}$. In the standard protocol, Alice performs the simultaneous measurement of the position and momentum for the compound system consisting of the input system in the quantum state $\hat{\rho}_{\text {in }}$ and her part of the bipartite system in the quantum state \hat{W}^{AB}. After the measurement, Alice informs Bob of the measurement outcome (x, p) by means of a classical communication channel. Knowing the measurement outcome, Bob applies the unitary transformation $\hat{D}(x, p)$ to his part of the bipartite system, where $\hat{D}(x, p)$ is the displacement operator

$$
\begin{equation*}
\hat{D}(x, p)=\exp [\mathrm{i}(p \hat{x}-x \hat{p})]=\exp \left(\alpha \hat{a}^{\dagger}-\alpha^{*} \hat{a}\right)=\hat{D}(\alpha) \tag{1}
\end{equation*}
$$

with ($\hat{a}, \hat{a}^{\dagger}$) being bosonic annihilation and creation operators and (\hat{x}, \hat{p}) being canonical position and momentum operator which are related by the equation $\hat{a}=(\hat{x}+\mathrm{i} \hat{p}) / \sqrt{2}$. The real and complex parameters are also related by $\alpha=(x+i p) / \sqrt{2}$.

The continuous-variable quantum teleportation enables Bob to finally get the quantum state $\hat{\rho}_{\text {out }}[19]$,

$$
\begin{equation*}
\hat{\rho}_{\text {out }}=\int_{-\infty}^{\infty} \mathrm{d} x \int_{-\infty}^{\infty} \mathrm{d} p P(x, p) \hat{D}(x, p) \hat{\rho}_{\text {in }} \hat{D}^{\dagger}(x, p) \tag{2}
\end{equation*}
$$

where the function $P(x, p)$ is given by

$$
\begin{equation*}
P(x, p)=\langle\Psi|[\hat{1} \otimes \hat{D}(x, p)]^{\dagger} \hat{W}^{\mathrm{AB}}[\hat{1} \otimes \hat{D}(x, p)]|\Psi\rangle \tag{3}
\end{equation*}
$$

and where $|\Phi\rangle$ is the continuous version of the EPR-Bell state

$$
\begin{equation*}
|\Phi\rangle=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{d} x|x\rangle \otimes|x\rangle \tag{4}
\end{equation*}
$$

with $|x\rangle$ being an eigenstate of the canonical position operator $(\hat{x}|x\rangle=x|x\rangle)$. The bipartite quantum state \hat{W}^{AB} shared by Alice and Bob can be represented in terms of the two-mode Wigner function $W\left(z_{1}, z_{2}\right)$ of the complex variables z_{1} and $z_{2}[20,21]$,

$$
\begin{equation*}
\hat{W}^{\mathrm{AB}}=4 \int \frac{\mathrm{~d}^{2} z_{1}}{\pi} \int \frac{\mathrm{~d}^{2} z_{2}}{\pi} W\left(z_{1}, z_{2}\right)(-1)^{\left(\hat{a}_{1}^{\dagger}-z_{1}^{*}\right)\left(\hat{a}_{1}-z_{1}\right)} \otimes(-1)^{\left(\hat{a}_{2}^{\dagger}-z_{2}^{*}\right)\left(\hat{a}_{2}-z_{2}\right)} \tag{5}
\end{equation*}
$$

where $\left(\hat{a}_{1}, \hat{a}_{1}^{\dagger}\right)$ and $\left(\hat{a}_{2}, \hat{a}_{2}^{\dagger}\right)$ are bosonic annihilation and creation operators of the two modes. Then, substituting this equation into equation (3), we find that the function $P(x, p)$ is expressed in terms of the Wigner function $W\left(z_{1}, z_{2}\right)$ as

$$
\begin{equation*}
P(x, p)=\frac{1}{2 \pi} \int \frac{\mathrm{~d}^{2} z}{\pi} W\left(z^{*}-\alpha^{*}, z\right) \equiv \frac{1}{2 \pi} \mathcal{W}(\alpha) \quad\left(\alpha=\frac{x+\mathrm{i} p}{\sqrt{2}}\right) \tag{6}
\end{equation*}
$$

We suppose that the bipartite quantum state \hat{W}^{AB} shared by Alice and Bob is a two-mode Gaussian state, the characteristic function $C\left(z_{1}, z_{2}\right)$ of which is given by

$$
\begin{equation*}
C\left(z_{1}, z_{2}\right)=\operatorname{Tr}\left[\hat{D}\left(z_{1}\right) \otimes \hat{D}\left(z_{2}\right) \hat{W}^{\mathrm{AB}}\right]=\exp \left(-\frac{1}{2} z^{\dagger} \mathrm{V}\right) \tag{7}
\end{equation*}
$$

where $\mathbf{z}=\left(z_{1}^{*}, z_{1}, z_{2}^{*}, z_{2}\right)^{\dagger}$ and V is a 4×4 Hermitian matrix. The corresponding Wigner function $W\left(z_{1}, z_{2}\right)$ is given by

$$
\begin{equation*}
W\left(z_{1}, z_{2}\right)=\sqrt{\operatorname{det} W} \exp \left(-\frac{1}{2} z^{\dagger} W z\right) \tag{8}
\end{equation*}
$$

where the 4×4 Hermitian matrix W is related to V by the relation $W=E V^{-1} E$ with the diagonal matrix $\operatorname{diag} \mathrm{E}=(1,-1,1,-1)$. In the following, we assume that the matrix V is a simple but important form [22]

$$
\mathrm{V}=\left(\begin{array}{cccc}
\bar{n}+\frac{1}{2} & 0 & 0 & \bar{m} \tag{9}\\
0 & \bar{n}+\frac{1}{2} & \bar{m}^{*} & 0 \\
0 & \bar{m} & \bar{n}+\frac{1}{2} & 0 \\
\bar{m}^{*} & 0 & 0 & \bar{n}+\frac{1}{2}
\end{array}\right)
$$

where $\bar{n}=\left\langle\hat{a}_{1}^{\dagger} \hat{a}_{1}\right\rangle_{12}=\left\langle\hat{a}_{2}^{\dagger} \hat{a}_{2}\right\rangle_{12}$ and $\bar{m}=-\left\langle\hat{a}_{1} \hat{a}_{2}\right\rangle_{12}$ with $\langle\cdots\rangle_{12}=\operatorname{Tr}\left[\cdots \hat{W}_{12}\right]$. The Wigner function $W\left(z_{1}, z_{2}\right)$ represents the mixed EPR-Bell state. For instance, when Alice and Bob share a two-mode squeezed-vacuum state through a noisy quantum channel, the parameters \bar{n} and \bar{m} are given by $\bar{n}=(1 / 2) T(\cosh 2 r-1)+(1-T) \bar{n}_{\mathrm{th}}$ and $\bar{m}=-(1 / 2) T \sinh 2 r$, where r is the squeezing parameter, T is the transmission rate and \bar{n}_{th} is the average photon number of the channel noise. The Heisenberg uncertainty relation requires that the parameters \bar{n} and \bar{m} satisfy the inequality $\bar{n}(\bar{n}+1) \geqslant|\bar{m}|^{2}$. Furthermore the two-mode Gaussian state \hat{W} is separable if and only if the parameters \bar{n} and \bar{m} satisfy the inequality $\bar{n} \geqslant|\bar{m}|$ [23-25].

When the matrix V is given by equation (9), the two-mode Wigner function $W\left(z_{1}, z_{2}\right)$ is obtained from equation (8)

$$
\begin{equation*}
W\left(z_{1}, z_{1}\right)=\frac{1}{\left(\bar{n}+\frac{1}{2}\right)^{2}-|\bar{m}|^{2}} \exp \left[-\frac{\Phi\left(z_{1}, z_{2}\right)}{\left(\bar{n}+\frac{1}{2}\right)^{2}-|\bar{m}|^{2}}\right] \tag{10}
\end{equation*}
$$

where the function $\Phi\left(z_{1}, z_{2}\right)$ is given by

$$
\begin{equation*}
\Phi\left(x_{1}, z_{2}\right)=\left(\bar{n}+\frac{1}{2}\right)\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)+\bar{m}^{*} z_{1} z_{2}+\bar{m} z_{1}^{*} z_{2}^{*} \tag{11}
\end{equation*}
$$

Thus, substituting equation (10) into equation (6), we obtain the function $\mathcal{W}(\alpha)$ which determines the continuous-variable quantum teleportation

$$
\begin{equation*}
\mathcal{W}(\alpha)=\frac{1}{\delta_{\bar{n} \bar{m}}} \exp \left(-\frac{|\alpha|^{2}}{\delta_{\bar{n} \bar{m}}}\right) \tag{12}
\end{equation*}
$$

with $\delta_{\bar{m} \bar{m}}=2 \bar{n}+\bar{m}+\bar{m}^{*}+1$. The inequality $\delta_{\bar{m} \bar{m}} \geqslant 0$ holds due to the uncertainty relation. When the two-mode Gaussian state \hat{W}^{AB} is separable, the inequality $\delta_{\bar{n} \bar{m}} \geqslant 1$ is satisfied.

We now consider a sequence of a continuous-variable entanglement swapping, the resources of which are arbitrary but identical bipartite quantum states. Note that the entanglement swapping is equivalent to the quantum teleportation of a part of the bipartite quantum state. In fact, we suppose that Alice and Charlie share an entangled state $\hat{W}^{\text {AC }}$ and Charlie and Bob share another entangled state \hat{W}^{BC}. When Charlie teleports his part of the entangled state \hat{W}^{AC} to Bob by means of the entangled state \hat{W}^{BC}, Alice and Bob can share the bipartite quantum state as a result. This is nothing but the entanglement swapping. Hence we can apply the results summarized above to continuous-variable entanglement swapping. A sequence of entanglement swapping may be classified into one-way entanglement swapping and two-way entanglement swapping which are depicted in figure 1. Classical information of the measurement outcomes flows from the left to the right in the one-way entanglement swapping (see figure $1(a)$) while it flows in both directions in the two-way entanglement swapping (see figure $1(b)$). We suppose that the entanglement swapping is performed by means of $2 k+1$ identical bipartite quantum states. Here we assume that the two-way entanglement swapping begins at the bipartite quantum state located at the mid-point, so that Alice and Bob can share the symmetric bipartite state. It is obvious that the one-way entanglement swapping yields the asymmetric bipartite state. Let $\hat{W}_{\text {one-way }}^{\mathrm{AB}}$ and $\hat{W}_{\text {two-way }}^{\mathrm{AB}}$ be the bipartite quantum states

Figure 1. The schematic representation of the sequence of continuous-variable entanglement swapping, where (a) shows the one-way entanglement swapping and (b) shows the two-way entanglement swapping.
that Alice and Bob can share in average by the one-way and two-way entanglement swapping. These quantum states are given by

$$
\begin{equation*}
\hat{W}_{\text {one-way }}^{\mathrm{AB}}=\left(\hat{\mathcal{I}} \otimes \hat{\mathcal{L}}^{2 k}\right) \hat{W}^{\mathrm{AB}} \quad \hat{W}_{\text {two-way }}^{\mathrm{AB}}=\left(\hat{\mathcal{L}}^{k} \otimes \hat{\mathcal{L}}^{k}\right) \hat{W}^{\mathrm{AB}} \tag{13}
\end{equation*}
$$

where the trace-preserving completely positive map is defined by

$$
\begin{equation*}
\hat{\mathcal{L}} \hat{X}=\int_{-\infty}^{\infty} \mathrm{d} x \int_{-\infty}^{\infty} \mathrm{d} p P(x, p) \hat{D}(x, p) \hat{X} \hat{D}^{\dagger}(x, p) \tag{14}
\end{equation*}
$$

In the following, we assume that the bipartite quantum state \hat{W}^{AB} is the Gaussian state which is characterized by equation (9) and hence we have equation (12).

To investigate the property of the bipartite Gaussian states $\hat{W}_{\text {one-way }}^{\mathrm{AB}}$ and $\hat{W}_{\text {two-way }}^{\mathrm{AB}}$ shared by Alice and Bob after the entanglement swapping, we calculate the characteristic functions (7) of these states and then we obtain from equations (12)-(14),

$$
\begin{align*}
& C_{\text {one-way }}\left(z_{1}, z_{2}\right)=\exp \left[-\frac{1}{2} \mathrm{z}^{\dagger} \mathrm{V}\left(\bar{n}, \bar{n}+2 k \delta_{\bar{n} \bar{m}) \mathrm{z}}\right]\right. \tag{15}\\
& C_{\text {two-way }}\left(z_{1}, z_{2}\right)=\exp \left[-\frac{1}{2} \mathrm{z}^{\dagger} \mathrm{V}\left(\bar{n}+k \delta_{\bar{n} \bar{m}}, \bar{n}+k \delta_{\bar{n} \bar{m}}\right) \mathrm{z}\right] \tag{16}
\end{align*}
$$

where the 4×4 Hermitian matrix $\mathrm{V}\left(\bar{n}_{1}, \bar{n}_{2}\right)$ is defined by

$$
\mathrm{V}\left(\bar{n}_{1}, \bar{n}_{2}\right)=\left(\begin{array}{cccc}
\bar{n}_{1}+\frac{1}{2} & 0 & 0 & \bar{m} \tag{17}\\
0 & \bar{n}_{1}+\frac{1}{2} & \bar{m}^{*} & 0 \\
0 & \bar{m} & \bar{n}_{2}+\frac{1}{2} & 0 \\
\bar{m}^{*} & 0 & 0 & \bar{n}_{2}+\frac{1}{2}
\end{array}\right)
$$

The necessary and sufficient condition for the separability of the bipartite Gaussian state characterized by the matrix $\mathrm{V}\left(\bar{n}_{1}, \bar{n}_{2}\right)$ is given by [23-25]

$$
\begin{equation*}
\bar{n}_{1} \bar{n}_{2} \geqslant|\bar{m}|^{2} \tag{18}
\end{equation*}
$$

Hence the bipartite Gaussian state $\hat{W}_{\text {one-way }}^{\mathrm{AB}}$ obtained by the one-way entanglement swapping is separable if and only if

$$
\begin{equation*}
\bar{n}\left(\bar{n}+2 k \delta_{\bar{n} \bar{m}}\right) \geqslant|\bar{m}|^{2} \tag{19}
\end{equation*}
$$

while the bipartite Gaussian state $\hat{W}_{\text {two-way }}^{\mathrm{AB}}$ obtained by the two-way entanglement swapping becomes separable if and only if

$$
\begin{equation*}
\left(\bar{n}+k \delta_{\bar{n} \bar{m}}\right)^{2} \geqslant|\bar{m}|^{2} . \tag{20}
\end{equation*}
$$

It is obvious that the inequality $\bar{n}\left(\bar{n}+2 k \delta_{\bar{n} \bar{m}}\right)<\left(\bar{n}+k \delta_{\bar{n} \bar{m}}\right)^{2}$ holds. This means that the parameters \bar{n} and \bar{m} can satisfy the inequality

$$
\begin{equation*}
\bar{n}\left(\bar{n}+2 k \delta_{\bar{n} \bar{m}}\right)<|\bar{m}|^{2} \leqslant\left(\bar{n}+k \delta_{\bar{n} \bar{m}}\right)^{2} \tag{21}
\end{equation*}
$$

When the parameters of the bipartite Gaussian state satisfy this inequality, Alice and Bob can share the entangled Gaussian state by the one-way entanglement swapping though they cannot if the two-way entanglement swapping is applied. It is important to note that the entanglement swapping is performed the same number of times in the both one-way and two-way entanglement swapping. Thus the one-way entanglement swapping is superior to the two-way entanglement swapping for sharing the entangled state. The entangled state created by the one-way entanglement swapping is asymmetric. The continuous-variable quantum teleportation by means of the asymmetric entangled state has been investigated [26].

The Heisenberg uncertainty relation requires that the parameters \bar{n} and \bar{m} satisfy the inequality $\bar{n}(\bar{n}+1) \geqslant|\bar{m}|$. In the extreme case, we have $\bar{m}=\bar{m}^{*}=-\sqrt{\bar{n}(\bar{n}+1)}$ and thus $\delta_{\bar{n} \bar{m}}=2 \bar{n}+\bar{m}+\bar{m}^{*}+1=(\sqrt{\bar{n}+1}-\sqrt{\bar{n}})^{2}$. In this case, the inequality equation (19) becomes

$$
\begin{equation*}
\bar{n} \leqslant \frac{(2 k-1)^{2}}{8 k} \equiv \bar{n}_{1} \tag{22}
\end{equation*}
$$

and the inequality equation (20) becomes

$$
\begin{equation*}
\bar{n} \leqslant \frac{k^{2}}{2 k+1} \equiv \bar{n}_{2} \tag{23}
\end{equation*}
$$

Then we can obtain the following result:

	$\bar{n} \leqslant \bar{n}_{1}$	$\bar{n}_{1}<\bar{n} \leqslant \bar{n}_{2}$	$\bar{n}_{2}<\bar{n}$
$\hat{W}_{\text {one-way }}^{\mathrm{AB}}$	Separable	Entangled	Entangled
$\hat{W}_{\text {two-way }}^{\text {AB }}$	Separable	Separable	Entangled

We suppose that the bipartite Gaussian state \hat{W}^{AB} is a two-mode squeezed-vacuum state with real squeezing parameter r. In this case, we have $\bar{n}=(1 / 2)(\cosh 2 r-1)$ and $\bar{m}=-(1 / 2) \sinh 2 r$ which satisfy the equality $\bar{m}=\bar{m}^{*}=-\sqrt{\bar{n}(\bar{n}+1)}$. Hence we obtain figure 2 and the following result:

	$r \leqslant \frac{1}{2} \ln (2 k)$	$\frac{1}{2} \ln (2 k)<\bar{n} \leqslant \frac{1}{2} \ln (2 k+1)$	$\frac{1}{2} \ln (2 k+1)<\bar{n}$
$\hat{W}_{\text {one-way }}^{\mathrm{AB}}$	Separable	Entangled	Entangled
$\hat{W}_{\text {two-way }}^{\mathrm{AB}}$	Separable	Separable	Entangled

When we perform the entanglement swapping twice $(k=1)$, the one-way entanglement swapping needs $r=0.347$ of squeezing to yield the entangled state while the two-way entanglement requires $r=0.549$ of squeezing.

In summary, we have considered the sequence of the continuous-variable entanglement swapping that is classified into the one-way entanglement swapping and the two-way entanglement swapping. The one-way entanglement swapping yields the asymmetric bipartite state and the two-way entanglement swapping gives the symmetric bipartite state. It has been shown that there is the parameter region in which the one-way entanglement swapping provides the entangled state while the two-way entanglement swapping cannot, though the entanglement swapping is performed the same number of times in the both one-way and

Figure 2. The relation between the strength of the squeezing parameter r that is necessary for the inseparability and the parameter k, where $2 k$ times the entanglement swapping is performed. Both the bipartite states $\hat{W}_{\text {one-way }}^{\mathrm{AB}}$ and $\hat{W}_{\text {two-way }}^{\mathrm{AB}}$ become inseparable in the region (A) and separable in the region (C). The bipartite state $\hat{W}_{\text {one-way }}^{\mathrm{AB}}$ is inseparable and $\hat{W}_{\text {two-way }}^{\mathrm{AB}}$ is separable in the region (B).
two-way entanglement swapping. This means that the one-way entanglement swapping is better than the two-way entanglement swapping for sharing the entangled state.

References

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Braunstein S L and Pati A K (eds) 2003 Quantum Information with Continuous Variables (Dordrecht: Kluwer)
[3] Ekert A K 1991 Phys. Rev. Lett. 67661
[4] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 701895
[5] Braunstein S L and Kimble H J 1998 Phys. Rev. Lett. 80869
[6] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 692881
[7] Ban M 1999 J. Opt. B 1 L9
[8] Braunstein S L and Kimble H J 2000 Phys. Rev. A 61042302
[9] Ban M 2000 J. Opt. B 2786
[10] Ban M 2000 Phys. Lett. A 276213
[11] Zukowski M, Zeilinger A, Horne M A and Ekert A K 1993 Phys. Rev. Lett. 714287
[12] Bose S, Vedral V and Knight P L 1998 Phys. Rev. A 57822
[13] Bose S, Vedral V and Knight P L 1999 Phys. Rev. A 60194
[14] Polkinghorne R E S and Ralph T C 1999 Phys. Rev. Lett. 832095
[15] Tan S M 1999 Phys. Rev. A 602752
[16] Lock P and Braunstein S L 1999 Phys. Rev. A $61010302(\mathrm{R})$
[17] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 701895
[18] Braunstein S L and Kimble H J 1998 Phys. Rev. Lett. 80869
[19] Ban M, Takeoka M and Sasaki M 2002 J. Phys. A: Math. Gen. 35 L401
[20] Cahill K E and Glauber R J 1969 Phys. Rev. 1771857
[21] Cahill K E and Glauber R J 1969 Phys. Rev. 1771882
[22] Englert B and Wókiewicz K 2003 Phys. Rev. A 65054303
[23] Duan L, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 842722
[24] Simon R 2000 Phys. Rev. Lett. 842726
[25] Englert B and Wódkiewicz K 2003 Int. J. Quantum Inf. 1153
[26] Kim M S and Lee J 2001 Phys. Rev. A 64012309

