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Abstract
A sequence of entanglement swapping of continuous variables is considered. It
is classified into one-way entanglement swapping and two-way entanglement
swapping, where the former (the latter) uses one-way (two-way) classical
communication. When resources of quantum entanglement are bipartite
Gaussian states, it is shown that the one-way entanglement swapping is
superior to the two-way entanglement swapping. This means that although
the entanglement swapping is performed the same number of times, there is
a case that the one-way entanglement swapping can yield an entangled state
while the two-way entanglement swapping cannot.

PACS numbers: 03.67.Hk, 03.67.Mn, 03.67.−a

Nonlocal entanglement between quantum states is a useful resource that has a number of
applications in quantum information processing [1, 2], such as a secret key distribution [3],
quantum teleportation [4, 5] and superdense coding [6–10]. Entanglement swapping
enables two parties that do not share quantum entanglement to share quantum entanglement
with the assistance of a third party [11–16]. Furthermore, entanglement swapping may
yield long-distance quantum entanglement from properly distributed short-distance quantum
entanglement. Hence entanglement swapping is one of the important methods in quantum
communication technology which aims at quantum information network. Entanglement
swapping has been investigated for discrete [11–13] and continuous variables [14–16]. It
may be considered as the quantum teleportation of a part of an entangled state [17, 18].
The purpose of this letter is to investigate the property of a sequence of continuous-variable
entanglement swapping. It will be shown that when resources of quantum entanglement are
bipartite Gaussian states, one-way entanglement swapping is better than two-way entanglement
swapping for distant users to share quantum entanglement. As an example, the condition for
a sequence of entanglement swapping to yield an entangled state is demonstrated by means of
two-mode squeezed-vacuum states.
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The entanglement swapping is equivalent to the quantum teleportation for a part of a
bipartite quantum state. Hence we first summarize the general theory of the continuous-
variable quantum teleportation with the standard protocol [19] in the convenient way for
investigating entanglement swapping. To teleport from Alice to Bob an unknown quantum
state ρ̂ in which is defined on an infinite-dimensional Hilbert space H, we assume that
they share an arbitrary bipartite quantum state ŴAB defined on a tensor product of the
infinite-dimensional Hilbert spaces HA ⊗ HB. In the standard protocol, Alice performs the
simultaneous measurement of the position and momentum for the compound system consisting
of the input system in the quantum state ρ̂ in and her part of the bipartite system in the quantum
state ŴAB. After the measurement, Alice informs Bob of the measurement outcome (x, p)

by means of a classical communication channel. Knowing the measurement outcome, Bob
applies the unitary transformation D̂(x, p) to his part of the bipartite system, where D̂(x, p)

is the displacement operator

D̂(x, p) = exp[i(px̂ − xp̂)] = exp(αâ† − α∗â) = D̂(α) (1)

with (â, â†) being bosonic annihilation and creation operators and (x̂, p̂) being canonical
position and momentum operator which are related by the equation â = (x̂ + ip̂)/

√
2. The

real and complex parameters are also related by α = (x + ip)/
√

2.
The continuous-variable quantum teleportation enables Bob to finally get the quantum

state ρ̂out [19],

ρ̂out =
∫ ∞

−∞
dx

∫ ∞

−∞
dp P (x, p)D̂(x, p)ρ̂ inD̂

†(x, p) (2)

where the function P(x, p) is given by

P(x, p) = 〈�|[1̂ ⊗ D̂(x, p)]†ŴAB[1̂ ⊗ D̂(x, p)]|�〉 (3)

and where |�〉 is the continuous version of the EPR–Bell state

|�〉 = 1√
2π

∫ ∞

−∞
dx|x〉 ⊗ |x〉 (4)

with |x〉 being an eigenstate of the canonical position operator (x̂|x〉 = x|x〉). The bipartite
quantum state ŴAB shared by Alice and Bob can be represented in terms of the two-mode
Wigner function W(z1, z2) of the complex variables z1 and z2 [20, 21],

ŴAB = 4
∫

d2z1

π

∫
d2z2

π
W(z1, z2)(−1)(â

†
1−z∗

1)(â1−z1) ⊗ (−1)(â
†
2−z∗

2)(â2−z2) (5)

where
(
â1, â

†
1

)
and

(
â2, â

†
2

)
are bosonic annihilation and creation operators of the two modes.

Then, substituting this equation into equation (3), we find that the function P(x, p) is expressed
in terms of the Wigner function W(z1, z2) as

P(x, p) = 1

2π

∫
d2z

π
W(z∗ − α∗, z) ≡ 1

2π
W(α)

(
α = x + ip√

2

)
. (6)

We suppose that the bipartite quantum state ŴAB shared by Alice and Bob is a two-mode
Gaussian state, the characteristic function C(z1, z2) of which is given by

C(z1, z2) = Tr[D̂(z1) ⊗ D̂(z2)Ŵ
AB] = exp

(− 1
2 z†Vz

)
(7)

where z = (z∗
1, z1, z

∗
2, z2)

† and V is a 4 × 4 Hermitian matrix. The corresponding Wigner
function W(z1, z2) is given by

W(z1, z2) =
√

det W exp
(− 1

2 z†Wz
)

(8)
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where the 4 × 4 Hermitian matrix W is related to V by the relation W = EV−1E with the
diagonal matrix diag E = (1,−1, 1,−1). In the following, we assume that the matrix V is a
simple but important form [22]

V =




n̄ + 1
2 0 0 m̄

0 n̄ + 1
2 m̄∗ 0

0 m̄ n̄ + 1
2 0

m̄∗ 0 0 n̄ + 1
2


 (9)

where n̄ = 〈
â
†
1â1

〉
12 = 〈

â
†
2â2

〉
12 and m̄ = −〈â1â2〉12 with 〈· · ·〉12 = Tr[· · · Ŵ12]. The Wigner

function W(z1, z2) represents the mixed EPR–Bell state. For instance, when Alice and Bob
share a two-mode squeezed-vacuum state through a noisy quantum channel, the parameters n̄

and m̄ are given by n̄ = (1/2)T (cosh 2r − 1) + (1 − T )n̄th and m̄ = −(1/2)T sinh 2r , where
r is the squeezing parameter, T is the transmission rate and n̄th is the average photon number
of the channel noise. The Heisenberg uncertainty relation requires that the parameters n̄ and
m̄ satisfy the inequality n̄(n̄ + 1) � |m̄|2. Furthermore the two-mode Gaussian state Ŵ is
separable if and only if the parameters n̄ and m̄ satisfy the inequality n̄ � |m̄| [23–25].

When the matrix V is given by equation (9), the two-mode Wigner function W(z1, z2) is
obtained from equation (8)

W(z1, z1) = 1(
n̄ + 1

2

)2 − |m̄|2
exp

[
− �(z1, z2)(

n̄ + 1
2

)2 − |m̄|2

]
(10)

where the function �(z1, z2) is given by

�(x1, z2) = (
n̄ + 1

2

)
(|z1|2 + |z2|2) + m̄∗z1z2 + m̄z∗

1z
∗
2. (11)

Thus, substituting equation (10) into equation (6), we obtain the function W(α) which
determines the continuous-variable quantum teleportation

W(α) = 1

δn̄m̄

exp

(
−|α|2

δn̄m̄

)
(12)

with δn̄m̄ = 2n̄ + m̄ + m̄∗ + 1. The inequality δn̄m̄ � 0 holds due to the uncertainty relation.
When the two-mode Gaussian state ŴAB is separable, the inequality δn̄m̄ � 1 is satisfied.

We now consider a sequence of a continuous-variable entanglement swapping, the
resources of which are arbitrary but identical bipartite quantum states. Note that the
entanglement swapping is equivalent to the quantum teleportation of a part of the bipartite
quantum state. In fact, we suppose that Alice and Charlie share an entangled state ŴAC and
Charlie and Bob share another entangled state ŴBC. When Charlie teleports his part of the
entangled state ŴAC to Bob by means of the entangled state ŴBC, Alice and Bob can share
the bipartite quantum state as a result. This is nothing but the entanglement swapping. Hence
we can apply the results summarized above to continuous-variable entanglement swapping. A
sequence of entanglement swapping may be classified into one-way entanglement swapping
and two-way entanglement swapping which are depicted in figure 1. Classical information
of the measurement outcomes flows from the left to the right in the one-way entanglement
swapping (see figure 1(a)) while it flows in both directions in the two-way entanglement
swapping (see figure 1(b)). We suppose that the entanglement swapping is performed by means
of 2k + 1 identical bipartite quantum states. Here we assume that the two-way entanglement
swapping begins at the bipartite quantum state located at the mid-point, so that Alice and Bob
can share the symmetric bipartite state. It is obvious that the one-way entanglement swapping
yields the asymmetric bipartite state. Let ŴAB

one-way and ŴAB
two-way be the bipartite quantum states
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WAB WAB WABWABWAB

Figure 1. The schematic representation of the sequence of continuous-variable entanglement
swapping, where (a) shows the one-way entanglement swapping and (b) shows the two-way
entanglement swapping.

that Alice and Bob can share in average by the one-way and two-way entanglement swapping.
These quantum states are given by

ŴAB
one-way = (Î ⊗ L̂2k)ŴAB ŴAB

two-way = (L̂k ⊗ L̂k)ŴAB (13)

where the trace-preserving completely positive map is defined by

L̂X̂ =
∫ ∞

−∞
dx

∫ ∞

−∞
dp P (x, p)D̂(x, p)X̂D̂†(x, p). (14)

In the following, we assume that the bipartite quantum state ŴAB is the Gaussian state which
is characterized by equation (9) and hence we have equation (12).

To investigate the property of the bipartite Gaussian states ŴAB
one-way and ŴAB

two-way shared
by Alice and Bob after the entanglement swapping, we calculate the characteristic functions
(7) of these states and then we obtain from equations (12)–(14),

Cone-way(z1, z2) = exp
[− 1

2 z†V(n̄, n̄ + 2kδn̄m̄)z
]

(15)

Ctwo-way(z1, z2) = exp
[− 1

2 z†V(n̄ + kδn̄m̄, n̄ + kδn̄m̄)z
]

(16)

where the 4 × 4 Hermitian matrix V(n̄1, n̄2) is defined by

V(n̄1, n̄2) =




n̄1 + 1
2 0 0 m̄

0 n̄1 + 1
2 m̄∗ 0

0 m̄ n̄2 + 1
2 0

m̄∗ 0 0 n̄2 + 1
2


 . (17)

The necessary and sufficient condition for the separability of the bipartite Gaussian state
characterized by the matrix V(n̄1, n̄2) is given by [23–25]

n̄1n̄2 � |m̄|2. (18)

Hence the bipartite Gaussian state ŴAB
one-way obtained by the one-way entanglement swapping

is separable if and only if

n̄(n̄ + 2kδn̄m̄) � |m̄|2 (19)

while the bipartite Gaussian state ŴAB
two-way obtained by the two-way entanglement swapping

becomes separable if and only if

(n̄ + kδn̄m̄)2 � |m̄|2. (20)
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It is obvious that the inequality n̄(n̄ + 2kδn̄m̄) < (n̄ + kδn̄m̄)2 holds. This means that the
parameters n̄ and m̄ can satisfy the inequality

n̄(n̄ + 2kδn̄m̄) < |m̄|2 � (n̄ + kδn̄m̄)2. (21)

When the parameters of the bipartite Gaussian state satisfy this inequality, Alice and Bob
can share the entangled Gaussian state by the one-way entanglement swapping though they
cannot if the two-way entanglement swapping is applied. It is important to note that the
entanglement swapping is performed the same number of times in the both one-way and
two-way entanglement swapping. Thus the one-way entanglement swapping is superior to the
two-way entanglement swapping for sharing the entangled state. The entangled state created
by the one-way entanglement swapping is asymmetric. The continuous-variable quantum
teleportation by means of the asymmetric entangled state has been investigated [26].

The Heisenberg uncertainty relation requires that the parameters n̄ and m̄ satisfy the
inequality n̄(n̄ + 1) � |m̄|. In the extreme case, we have m̄ = m̄∗ = −√

n̄(n̄ + 1) and thus
δn̄m̄ = 2n̄ + m̄ + m̄∗ + 1 = (

√
n̄ + 1 − √

n̄)2. In this case, the inequality equation (19) becomes

n̄ � (2k − 1)2

8k
≡ n̄1 (22)

and the inequality equation (20) becomes

n̄ � k2

2k + 1
≡ n̄2. (23)

Then we can obtain the following result:

n̄ � n̄1 n̄1 < n̄ � n̄2 n̄2 < n̄

ŴAB
one-way Separable Entangled Entangled

ŴAB
two-way Separable Separable Entangled

We suppose that the bipartite Gaussian state ŴAB is a two-mode squeezed-vacuum state
with real squeezing parameter r. In this case, we have n̄ = (1/2)(cosh 2r − 1) and
m̄ = −(1/2) sinh 2r which satisfy the equality m̄ = m̄∗ = −√

n̄(n̄ + 1). Hence we obtain
figure 2 and the following result:

r � 1
2 ln(2k) 1

2 ln(2k) < n̄ � 1
2 ln(2k + 1) 1

2 ln(2k + 1) < n̄

ŴAB
one-way Separable Entangled Entangled

ŴAB
two-way Separable Separable Entangled

When we perform the entanglement swapping twice (k = 1), the one-way entanglement
swapping needs r = 0.347 of squeezing to yield the entangled state while the two-way
entanglement requires r = 0.549 of squeezing.

In summary, we have considered the sequence of the continuous-variable entanglement
swapping that is classified into the one-way entanglement swapping and the two-way
entanglement swapping. The one-way entanglement swapping yields the asymmetric bipartite
state and the two-way entanglement swapping gives the symmetric bipartite state. It has
been shown that there is the parameter region in which the one-way entanglement swapping
provides the entangled state while the two-way entanglement swapping cannot, though the
entanglement swapping is performed the same number of times in the both one-way and
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Figure 2. The relation between the strength of the squeezing parameter r that is necessary for
the inseparability and the parameter k, where 2k times the entanglement swapping is performed.
Both the bipartite states ŴAB

one-way and ŴAB
two-way become inseparable in the region (A) and separable

in the region (C). The bipartite state ŴAB
one-way is inseparable and ŴAB

two-way is separable in the
region (B).

two-way entanglement swapping. This means that the one-way entanglement swapping is
better than the two-way entanglement swapping for sharing the entangled state.
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